DAT 300: Paper presentation

By Antoine Allard

5th year Computer Sciences Engineering Student INSA de Lyon, France

Keywords:

- Distributed generation, Electric vehicules, Grid planning
- Cyber-Physical System, Data analysis, Pattern clustering

List of papers

The future of the Electric grid

<u>Chap.5 : The Impact of Distributed Generation and Electric Vehicles</u> 2011

An interdisciplinary MIT study (Two pages of smart people)

Multidimensional Analysis of Atypical Events in Cyber-Physical Data 2012

Lu-An Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Wen-Chih Peng, Yizhou Sun, Hector Gonzalez, Sebastian Seith

From University of Illinois at Urbana-Champaign

& National Chiao Tung University

& Google Research

& Morningstar Inc.

2011 An interdisciplinary MIT study

Keywords: Distributed generation, Electric vehicules, Grid planning

1kW < <u>Small-scale generators</u> < 10MW

Connected to the grid at distribution or substation level.

Solar photovoltaics, wind turbines, ...

Owned by customers or industries.

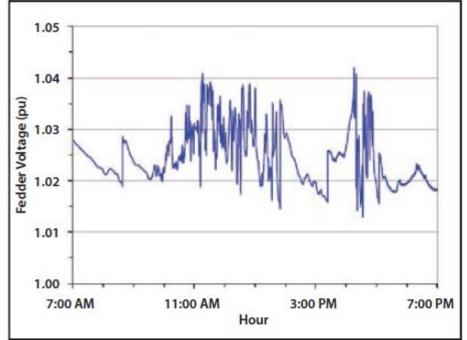
Reliability and Security Benefits	Economic Benefits	Emission Benefits	Power Quality Benefits
 Increased security for critical loads Relieved transmission and distribution congestion Reduced impacts from 	 Reduced costs associated with power losses Deferred investments for generation, transmission, or distribution upgrades Lower operating costs 	 Reduced pollutant emissions Reduced pollutant emissions S ue to ciency 	 Voltage profile improvement Reduced flicker Reduced harmonic distortion
 Neutreal impacts from physical or cyberattacks Increased generation diversity 	 Lower operating costs due to peak shaving Reduced fuel costs due to increased overall efficiency Reduced land use for generation 		

Source: U.S. Department of Energy, *The Potential Benefits of Distributed Generation and Rate-Related Issues that May Impede Their Expansion: A Study Pursuant to Section 1817 of the Energy Policy Act of 2005* (Washington, DC, 2007); and P. Chiradeja and R. Ramakumar, "An Approach to Quantify the Technical Benefits of Distributed Generation," *IEEE Transactions on Energy Conversion* 19, no. 4 (2004): 764–773.

Photovoltaic (PV)
1998-2007: 1 PV installation < 10kW</p>
2009 : 1 PV installation > 14 MW
93k residential PV installations (2009) for 450MW capacity
Huge price drop, \$10,50/Wdc (1998) to \$3,70 (2011)
Not yet competitive, will come soon!

A lot of potential benefits... what about adverse impacts?

A lot of potential benefits... what about adverse impacts?

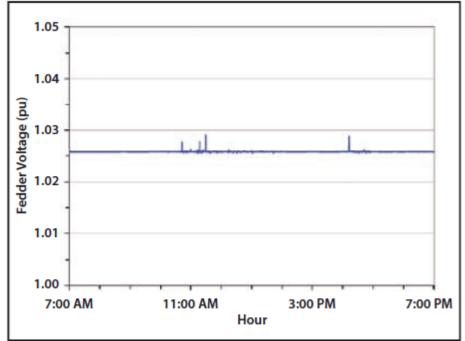

- ⊗ Voltage waveform distortion
- ☺ Flicker (rapid voltage variations)
- [⊗] Workers safety

A lot of potential benefits... what about adverse impacts?

- $\ensuremath{\mathfrak{S}}$ Voltage waveform distortion
- ☺ Flicker (rapid voltage variations)
- [⊗] Workers safety

Example: Feeder Voltage at the Point of Interconnection of a Solar PV System

(a) Without Voltage Regulation Capability


Source: ©2010 IEEE. Reprinted, with permission, from R. A. Walling and K. Clark, "Grid Support Functions Implemented in Utility-Scale PV Systems," paper presented at the Transmission and Distribution Conference and Exposition, 2010 IEEE Power & Energy Society, New Orleans, LA, April 19–22, 2010.

A lot of potential benefits... what about adverse impacts?

- $\ensuremath{\mathfrak{S}}$ Voltage waveform distortion
- ☺ Flicker (rapid voltage variations)
- ⊗ Workers safety

Example: Feeder Voltage at the Point of Interconnection of a Solar PV System

(b) With Voltage Regulation Capability

Source: © 2010 IEEE. Reprinted, with permission, from R. A. Walling and K. Clark, "Grid Support Functions Implemented in Utility-Scale PV Systems," paper presented at the Transmission and Distribution Conference and Exposition, 2010 IEEE Power & Energy Society, New Orleans, LA, April 19–22, 2010.

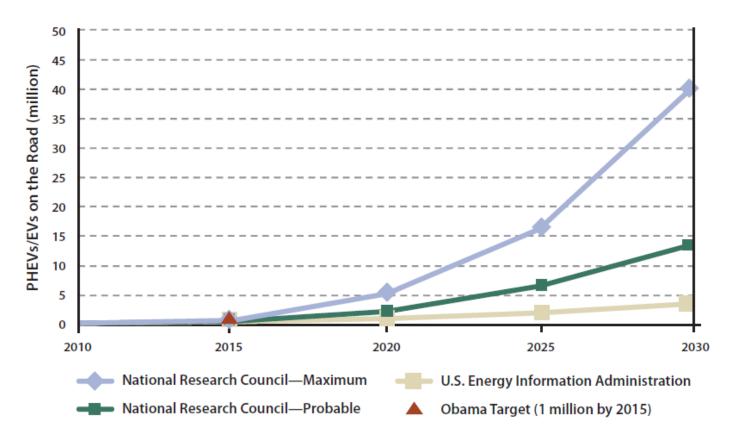
IEEE Standard 1547

First release 2003.

Prevent negative impacts from DG units.

Several addendums, evolving with the technology.

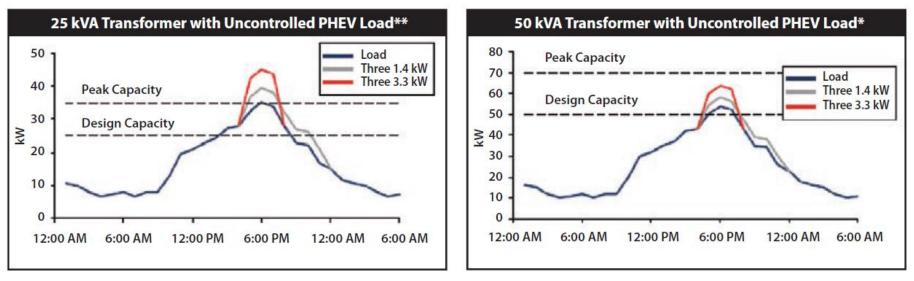
Now, « fit & forget » protection schemes: circuit breakers, fuses,... Calibrated once on local distribution characteristics.


Next, <u>Active System Management</u> Use real-time information! Dynamically change protective relay setting.

4kWh (PHEV) < Electric Vehicule battery < 53kWh (BEV) Load can be higher than a house. Impact will depend on market penetration.

National projections with highly variations.

Source: Projection data from Committee on Assessment of Resource Needs for Fuel Cell and Hydrogen Technologies and National Research Council, *Transitions to Alternative Transportation Technologies—Plug-in Hybrid Electric Vehicles* (Washington, DC: National Academies Press, 2010); Daily Compilation of Presidential Documents 2011 DCPD No. 00047, p. 3 (January 25, 2011); and U.S. Energy Information Administration, *Annual Energy Outlook 2011* (Washington, DC: U.S. Department of Energy, 2011).


EV expected to cluster in local regions.

Select high-income and eco-conscious neighborhoods.

Major threat for local distribution network.

Major threat for local distribution network.

(a) 25 kVA Transformer

(b) 50 kVA Transformer

Source: J. LeBrun, DTE Energy, "Plug-in Electric Vehicle Overview," presentation at A Tale of Three Cities, webcast hosted by Intelligent Utility, January 6, 2011.

Major threat for local distribution network.Level II charger is a bigger load than a house.Same charging pattern accross population.Potentially lot of EV in some neighbourhoods.

How to solve this overload threat?

Influencing the timing of vehicle charging.

Policy or controls to produce a flat load between 6 p.m. and 6 a.m.

□ Time-differentiated tariffs

□ Centralized charging control structures

Summary:

- Distributed Generation (DG) & Electric Vehicules (EV)
- Expected increase in next 10+ years
- > Systemic changes in electric grid planning and operations.
- > Concern of industry engineers.

Lu-An Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Wen-Chih Peng, Yizhou Sun, Hector Gonzalez and Sebastian Seith From University of Illinois at Urbana-Champaign & National Chiao Tung University & Google Research & Morningstar Inc.

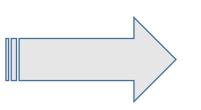
Keywords: Cyber-Physical System, Data analysis, Pattern clustering

Cyber-Physical System (CPS)

□ Large number of sensors

□ Huge amount of data

Monitoring



Cyber-Physical System (CPS)

□ Large number of sensors

□ Huge amount of data

□ Monitoring

Example: Road network

- ✓ Thousands sensors
- ✓ 24 hours x 7 days
- ✓ Terabytes data records

Data collected:

Locations, time, weather, temperature...

Multi-dimensional information.

Normal behavior most of the time!

Complex events:

□ Fondamental change in monitored objects

Expanding spatial range

□ Moving time window

If something happen, atypical data!

What information do users want?Not 1000 database records.Few significant results.Summarized data.

The paper is introducing a new technique:

□ To discover atypical events

□ To summarize them as atypical clusters

Claims:

□ More accurate

Better detail level

□ 20% time cost of the baseline

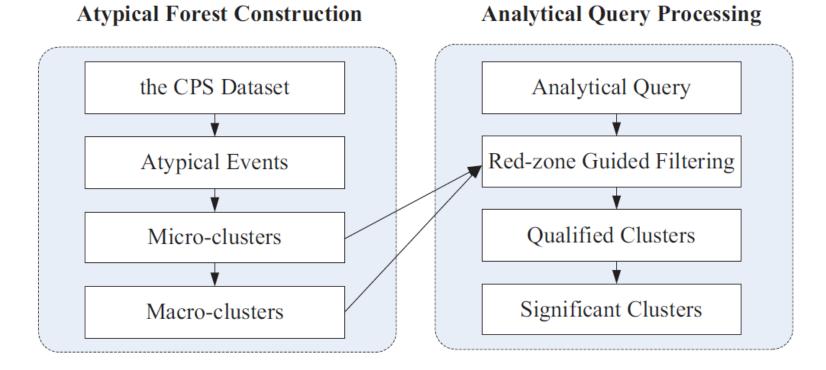
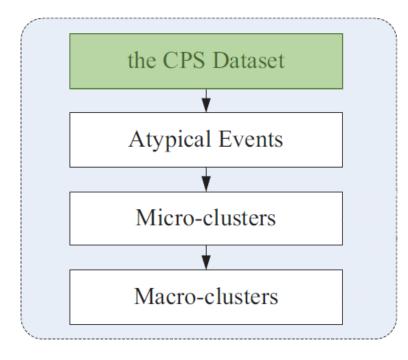
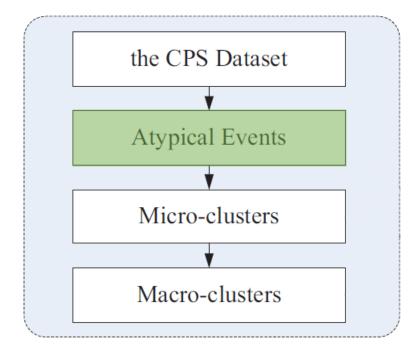



Fig. 2. The Overview of System Framework

Atypical Forest Construction



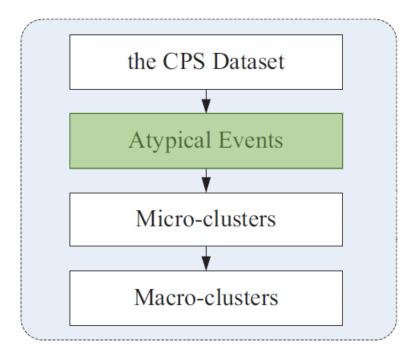
Extract data out of tresholds. Agregate records based on:

- □ Time relevance
- □ Close spatial relation

Atypical Forest Construction

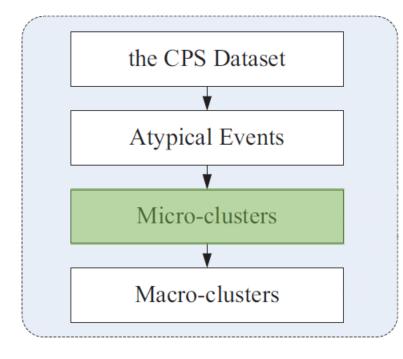
Extract data out of tresholds.

Agregate records based on:


□ Time relevance

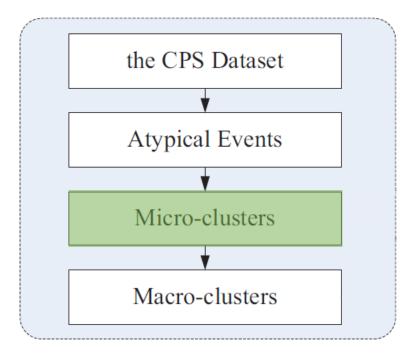
□ Close spatial relation

ID	Atypical Records
E_A	$\langle s_{I}, 8:05am - 8:10am, 4 min \rangle; \langle s_{I}, 8:10am - 8:15am, 5 min \rangle; \langle s_{2}, 8:10am - 8:15am, 5 min \rangle; \langle s_{3}, 8:15am - 8:20am, 5 min \rangle; \langle s_{4}, 8:15am - 8:20am, 2 min \rangle;$
E_B	<s<sub>3, 6:20pm - 6:25pm, 2 min>; <s<sub>4, 6:20pm - 6:25pm, 5 min>; <s<sub>1, 6:25pm - 6:30pm, 5 min>; <s<sub>4, 6:25pm - 6:30pm, 5 min>; <s<sub>5, 6:30pm - 6:35pm, 5 min>;</s<sub></s<sub></s<sub></s<sub></s<sub>
E_C	<pre><s1, -="" 1="" 8:20am="" 8:25am,="" min="">; <s1, -="" 5="" 8:25am="" 8:30am,="" min="">; <s9, 8:25am - 8:30am, 5 min>; <s1, -="" 5="" 8:30am="" 8:35am,="" min="">; <s7, 8:35am - 8:40am, 3 min>;</s7, </s1,></s9, </s1,></s1,></pre>


Atypical Forest Construction

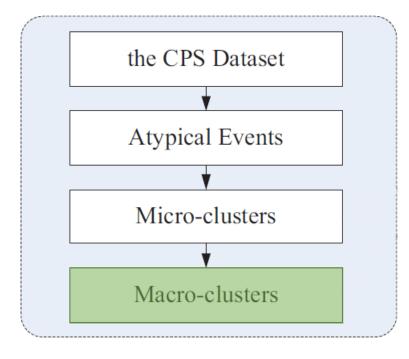
Collection of atypical events. Summary of event features.

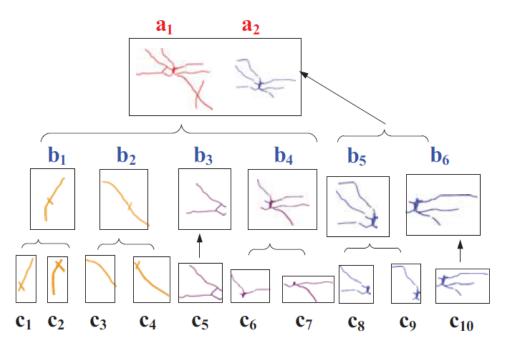
Atypical Forest Construction



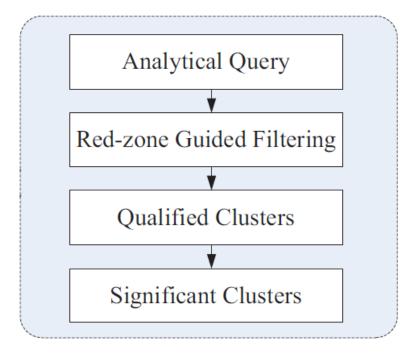
Collection of atypical events. Summary of event features.

ID	Spatial Features	Temporal Features
C_A	< <i>s</i> ₁ , 182 min>; < <i>s</i> ₂ , 97 min>; < <i>s</i> ₃ , 33 min>; < <i>s</i> ₄ , 12 min>; 	<8:05am - 8:10 am, 4 min>; <8:10 am - 8:15 am, 10 min>;···
C_B	<s<sub>1, 12 min>; <s<sub>2, 51 min>; <s<sub>3, 34 min>; <s<sub>4, 140 min>; </s<sub></s<sub></s<sub></s<sub>	<6:20 pm - 6:25 pm, 7 min>; <6:25 pm - 6:30 pm, 13 min>;···
C_C	<s<sub>1, 103 min>; <s<sub>2, 75 min>; <s<sub>7, 54 min>; <s<sub>9, 60 min>; </s<sub></s<sub></s<sub></s<sub>	<8:20am - 8:25 am, 1 min>; <8:25 am - 8:30 am, 15 min>;···

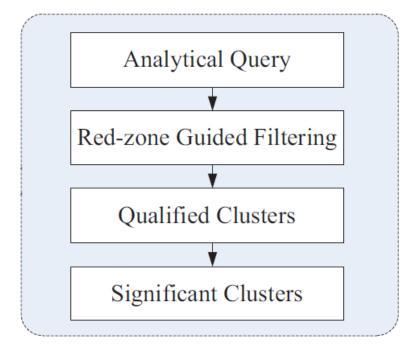

Atypical Forest Construction


Integrated information from multiple atypical events. Summary of events over time or region.

Atypical Forest Construction



Integrated information from multiple atypical events. Summary of events over time or region.


Analytical Query Processing

Problems: Efficiency & Effectiveness☺ Quadratic time complexity

Analytical Query Processing

Problems: Efficiency & Effectiveness☺ Quadratic time complexity

Solutions: © Prune irrelevant clusters

19/05/2014

Performance evaluation:

- ✓ CubeView, bottom-up method
- ✓ Atypical Cluster method

Evaluation of model construction

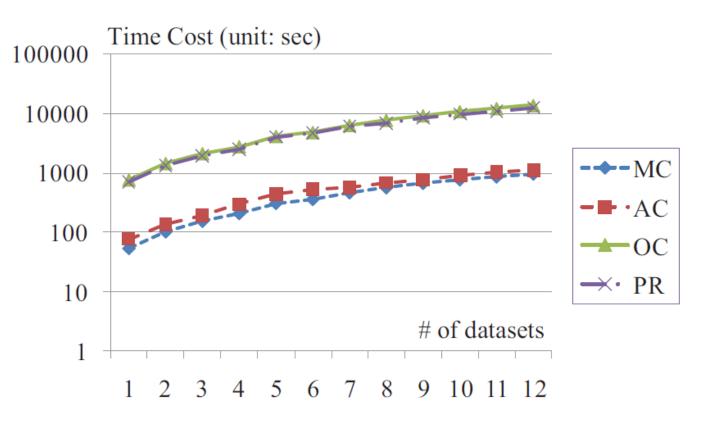


Fig. 15. Efficiency: Construction Time Cost vs. # of Datasets

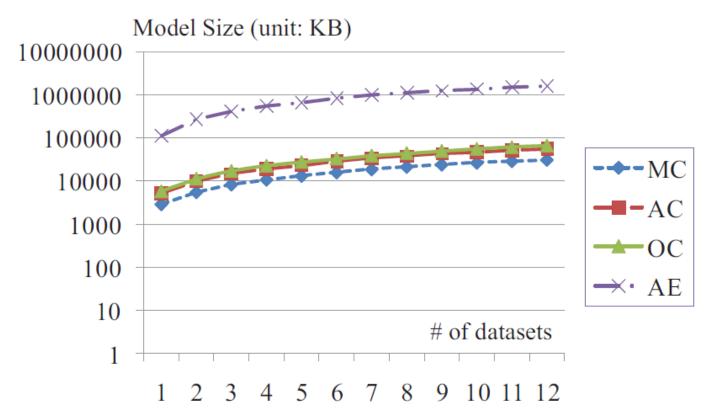
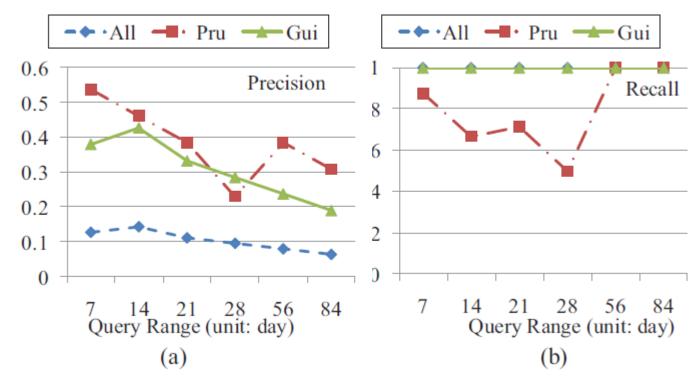



Fig. 16. Size: Constructed Model Size vs. # of Datasets

Comparison in analytical query processing

Conclusions:

- ✓ Clustering data is hard.
- ✓ Multi-dimentional considerations.
- \checkmark Atypical events don't fit a model.

Thank you for listening!

Do you have any questions?